Note

Reaction of Meldrum's acid with D-mannose and L-arabinose

Francisca Zamora Mata, Manuel Bueno Martínez, and Juan A. Galbis Pérez Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41071 Sevilla (Spain)

(Received June 4th, 1991; accepted July 31st, 1991)

The reaction¹ of Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) with D-xylose, D-glucose, and D-galactose yields mainly 3,6-anhydro-2-deoxyaldono-1,4-lactones. We now report further examples of this reaction.

Thus, reaction of L-arabinose gave syrupy 3,6-anhydro-2-deoxy-L-gluco-heptono-1,4-lactone (1), which was characterised as its 5,7-diacetate 2. The $J_{4,5}$ values (1.1 and 0.0 Hz, respectively) of 1 and 2 accord²⁻⁴ with the *trans* arrangement of H-4,5 and confirm the proposed bicyclic structure.

Likewise, D-mannose gave the 3,6-anhydro-2-deoxy-D-glycero-D-galacto-octo-no-1,4-lactone (4), the $J_{4,5}$ value (4.0 Hz) of which accorded 3,5,6 with a cis arrangement of H-4,5. A second product isolated after this reaction was identified as the known 3,6-anhydro-2-deoxy-D-glycero-D-ido-octono-1,4-lactone (3). Compound 3 could be formed by inversion of configuration at C-4 in the unsaturated lactone 5, which is a probable intermediate in these reactions. This inversion has been observed with D-galactose 1 and D-mannose in the Wittig and Knoevenagel-Doebner reactions 7.

As the desired C-glycosyl derivatives of Meldrum's acid could not be obtained directly from unprotected sugars, the reaction was applied to 2,3,4,6-tetra-O-acetyl-D-glucose which gave $\mathbf{6}$, the β configuration of which was indicated by the $J_{1,2}$ value (10.0 Hz). Compound $\mathbf{6}$ is a useful intermediate for the preparation of other C-D-glucosyl derivatives. Thus, hydrolysis in aqueous acetic acid gave a good yield of known⁸ 4,5,6,7-tetra-O-acetyl-3,7-anhydro-2-deoxy-D-glycero-D-gulo-octonic acid (7).

EXPERIMENTAL

General. — Solutions were concentrated in vacuo at $<40^{\circ}$. Melting points were determined with a Gallenkamp apparatus and are uncorrected. Optical rotations were measured at 18° with a Perkin–Elmer 141 polarimeter (10-cm cell). T.l.c. was performed on Silica Gel 60 F_{254} (Merck) with detection by u.v. light or charring with H_2SO_4 . Flash-column chromatography was performed as described. F.t.-i.r. spectra (KBr discs) were recorded with a Michelson 100 spectrometer. H-N.m.r. spectra were recorded with a Bruker WP-80-SY (80.13 MHz) or Varian XL-200 (200 MHz) intrument, and ^{13}C -n.m.r. spectra with a Bruker WP-80-SY (20.15 MHz) spectrometer.

3,6-Anhydro-2-deoxy-L-gluco-heptono-1,4-lactone (1). — A solution of 2,2-dimethyl-1,3-dioxane-4,6-dione (1.44 g, 10.0 mmol), L-arabinose (1.48 g, 10.0 mmol), and triethylamine (1.4 mL, 10.0 mmol) in N,N-dimethylformamide (5 mL) was heated for 7 days at 40–50°, then concentrated under diminished pressure. Column chromatography (6:1 CHCl₃-MeOH) of the residue gave 1 (0.8 g, 47%), isolated as a syrup, $[\alpha]_{\rm b}$ + 10° (c 1, H₂O), $R_{\rm F}$ 0.65. N.m.r. data $[({\rm CD}_3)_2{\rm SO}]$: ${}^{\rm l}{\rm H}$, δ 5.66 (d, 1 H, $J_{\rm 5.0H}$ 4.8 Hz, HO-5), 4.85 (t, 1 H, $J_{\rm 7.0H}$ 5.2 Hz, HO-7), 4.76 (dd, 1 H, $J_{\rm 3.4}$ 4.4, $J_{\rm 4.5}$ 1.1 Hz, H-4), 4.69 (dd, 1 H, $J_{\rm 2a,3}$ 5.4, $J_{\rm 2b,3}$ 0.0 Hz, H-3), 4.02 (dd, 1 H, $J_{\rm 5.6}$ 4.6 Hz, H-5), 3.67 (td, 1 H, $J_{\rm 6.7a}$ = $J_{\rm 6.7b}$ = 5.5 Hz, H-6), 3.60–3.30 (m, 2 H, H-7a,7b), 2.85 (dd, 1 H, $J_{\rm 2a.2b}$ – 18.2 Hz, H-2a), and 2.45 (d, 1 H, H-2b); ${}^{\rm l}{\rm l}{\rm C}$, δ 35.8 (C-2), 61.2 (C-7), 75.4, 76.9, 87.1, 89.9 (C-3/6), 175.2 (C-1).

The 5,7-diacetate **2** (0.52 g, 71%) had m.p. 65–66° (from EtOH), $[\alpha]_{\rm b}$ + 86° (c 1, CHCl₃); $\nu_{\rm max}$ 1788 and 1739 cm⁻¹ (C = O). N.m.r. data (CDCl₃): ¹H, δ 5.21 (d, 1 H, $J_{4,5}$ 0.0, $J_{5,6}$ 3.9 Hz, H-5), 4.98–4.78 (m, 2 H, H-3, 4), 4.40–4.10 (m, 1 H, H-6), 4.38 (dd, 1 H, $J_{6,7a}$ 5.1, $J_{7a,7b}$ – 12.7 Hz, H-7a), 4.18 (dd, 1 H, $J_{6,7b}$ 4.1, H-7b), 2.74 (m, 2 H, H-2a,2b), 2.13, 2.08 (2 s, 6 H, 2 OAc); ¹³C, δ 20.3 (2 CH₃CO), 35.8 (C-2), 63.1 (C-7), 77.7 (C-5), 78.2 (C-3), 83.2 (C-6), 86.9 (C-4), 169.4, 170.3 (2 CH₃CO), 173.8 (C-1).

Anal. Calc. for C₁₁H₁₄O₇: C, 51.16; H, 5.46. Found: C, 51.31; H, 5.44.

3,6-Anhydro-2-deoxy-D-glycero-D-ido-octono-1,4-lactone (3) and 3,6-anhydro-2-deoxy-D-glycero-D-galacto-octono-1,4-lactone (4). — Treatment of D-mannose (4.05 g, 22.5 mmol), as described for L-arabinose, gave, first, 3¹ (1.8 g, 39%).

Eluted second was 4 (0.5 g, 11%), m.p. 166–167° (from EtOH), $[\alpha]_{\rm b}$ + 136° (c 1, CHCl₃), $R_{\rm F}$ 0.32; $v_{\rm max}$ 1785 and 1751 cm⁻¹ (C = O). N.m.r. data [(CD₃)₂SO]: ¹H, δ 5.29 (d, 1 H, $J_{5,\rm OH}$ 5.7 Hz, HO-5), 5.02 (d, 1 H, $J_{7,\rm OH}$ 5.2 Hz, HO-7), 4.52 (t, 1 H, $J_{8,\rm OH}$ 5.6 Hz, HO-8), 4.52 (dd, 1 H, $J_{3,4}$ 1.9, $J_{4,5}$ 4.0 Hz, H-4), 4.31 (dd, 1 H, $J_{2a,3}$ 4.01, $J_{2b,3}$ 0.0 Hz, H-3), 3.70–3.10 (m, 5 H, H-5/8), 2.87 (dd, 1 H, $J_{2a,2b}$ – 16.9 Hz, H-2a), 2.28 (d, 1 H, H-2b); ¹³C, δ 37.8 (C-2), 61.0 (C-8), 66.8, 71.6, 72.9, 79.4, 81.6 (C-3/7), 175.6 (C-1).

Anal. Calc. for C₈H₁₂O₆: C, 47.06; H, 5.92. Found: C, 47.28; H, 5.93.

NOTE 161

2,2-Dimethyl-5-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-1,3-dioxane-4,6-dione (6). — A solution of 2,2-dimethyl-1,3-dioxane-4,6-dione (0.74 g, 5.18 mmol), 2,3,4,6-tetra-O-acetyl-D-glucose (0.91 g, 2.59 mmol), and triethylamine (0.36 mL, 2.59 mmol) in acetonitrile (2 mL) was heated for 2 days at 40–50°, then concentrated under diminished pressure. Column chromatography (20:1 chloroform-methanol) of the residue gave 6 (0.72 g, 59%), m.p. 192–194° (from aq. 90% EtOH), $[\alpha]_D$ + 12° (c 1, EtOH), R_F 0.20; v_{max} 1746 and 1602 cm⁻¹ (C = O). N.m.r. data $[(CD_3)_2SO]$: 1H , δ 5.74 (t, 1 H, $J_{2,3}$ 9.5 Hz, H-2), 5.04 (t, 1 H, $J_{3,4}$ 9.5 Hz, H-3), 4.84 (t, 1 H, $J_{4,5}$ 9.5 Hz, H-4), 4.42 (d, 1 H, $J_{1,2}$ 10.0 Hz, H-1), 4.10 (dd, 1 H, $J_{5,6a}$ 5.04, $J_{6a,6b}$ – 11.8 Hz, H-6a), 3.87 (dd, 1 H, $J_{5,6b}$ 2.5, H-6b), 3.75–3.50 (m, 1 H, H-5), 1.99, 1.96, 1.88, 1.79 (4 s, 12 H, 4 OAc), 1.38 (s, 6 H, 2 CMe); 13 C, δ 20.1 (OAc), 25.5 (CH₃-2'), 62.7 (C-6), 70.3 (C-5'), 68.9, 69.3, 73.8, 75.0, 75.3 (C-1/5), 98.9 (C-2'), 146.7 (C-1',3'), 168.2, 169.0, 169.4, 169.8 (4 OAc).

Anal. Calc. for $C_{20}H_{26}O_{13} \cdot H_2O$: C, 48.98; H, 5.34. Found: C, 48.70; H, 5.30.

4,5,6,7-Tetra-O-acetyl-3,7-anhydro-2-deoxy-D-glycero-D-gulo-octonic acid (7). — A solution of 2,2-dimethyl-1,3-dioxane-4,6-dione (0.65 g, 4.51 mmol), 2,3,4,6-tetra-O-acetyl-D-glucose (1.13 g, 3.24 mmol), and triethylamine (0.40 mL) in acetonitrile (4 mL) was treated as described in the preparation of 6. After evaporation of the solvent, a solution of the residue in 10:1 acetic acid—water was heated for 2 h at 100°, then concentrated under diminished pressure, and the residue was treated with water. The residue was recrystallised from ethanol—water to give 7 (0.76 g, 60%), m.p. 99–100°, $[\alpha]_D$ – 2.4° (c 3.4, CHCl₃); lit.⁸ m.p. 104.5–105.5°, $[\alpha]_D$ – 4.3° (c 1.95, CHCl₃). N.m.r. data (CDCl₃): 1 H, δ 5.40–3.50 (m, 5 H, H-3/7), 4.25 (dd, 1 H, $J_{7,8a}$ 4.6, $J_{8a,8b}$ – 11.5 Hz, H-8a), 4.05 (dd, 1 H, $J_{7,8b}$ 2.9 Hz, H-8b), 2.55 (m, 2 H, H-2a,2b), 2.07, 2.03, 2.02, 2.00 (4 s, 12 H, 4 OAc); 13 C, δ 20.5 (4 CH₃CO), 37.0 (C-2), 62.2 (C-8), 68.7, 71.7, 74.3, 74.4, 76.0 (C-3/7), 169.4, 169.6, 170.2, 170.6 (4 CH₃CO), 174.3 (C-1).

ACKNOWLEDGMENT

We thank the CICYT (Comisión Interministerial de Ciencia y Tecnología) for financial support (Grant MAT90-0779-C02-01).

REFERENCES

- 1 F. Zamora Mata, M. Bueno Martinez, and J. A. Galbis Pérez, Carbohydr. Res., 201 (1990) 223-231.
- 2 J. A. Galbis Pérez, F. Zamora Mata, and P. Turmo Fernandez, Carbohydr. Res., 163 (1987) 132-135.
- 3 J. A. Galbis Pérez, J. C. Palacios Albarrán, J. L. Jiménez Requejo, and M. Avalos González, Carbohydr. Res., 131 (1984) 71-82.
- 4 R. M. Davidson, E. White V, S. A. Margolis, and B. Coxon, Carbohydr. Res., 116 (1983) 239-254.
- 5 H. Fritz, C. Morel, and O. Wacker, Helv. Chim. Acta, 51 (1968) 569-576.
- 6 J. C. Jochims, A. Seeliger, and G. Taigel, Chem. Ber., 100 (1967) 845-854.
- 7 P. M. Collins, W. G. Overend, and T. S. Shing, J. Chem. Soc., Chem. Commun., (1982) 297-298.
- 8 S. Hanessian and A. G. Pernet, J. Chem. Soc., Chem. Commun., (1971) 755-756.
- 9 W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 43 (1978) 2923-2925.